Tag Archives: dynamics

Understanding the chain fountain

Our chum Steve Mould has had a bit of a hit over the last few years with his chain fountain demo:

There have been arm-waving explanations (some more convincing than others), but recently John Biggins and Mark Warner in Cambridge have published a much more complete description of what’s going on.

Now, the video at the head of this post makes me wince a little, partly because I’m a snobby film-maker but also because the section from about 3:10 (about centripetal force) could, I think, be clearer. It’s not explicit, for example, that in the steady state the chain velocity must be the same all along the chain: that’s why the ‘ball being thrown straight upwards’ analogy works. It’s not that the ball is stationary at the top (if the ball’s path is arced like the chain’s, the ball isn’t stationary), it’s that the ball’s speed changes during its flight. The chain can’t do that.

There are several similar conceptual jumps which make sense only once you’ve understood the process, not whilst you’re in the process of understanding – a common mistake in academic scicomms, if I’m being snarky. You can see the result of these skipped steps in the comments thread at YouTube, which pretty much mirrors what I’d expect. That is: people tripping over precisely the parts the film covers poorly.

However, the torque argument for a force component from the beaker is lovely. The macaroni-on-a-string demo isn’t properly convincing as shown, but it does offer the beginnings of something terrific.

So, critical me thinks there’s better scicomms still to be done around this, but what delights me about the whole episode is that ‘proper’ physics is being done from a scicomms curiosity. It’s also a remainder that often science communicators stop just before the science gets properly interesting: we chicken out at the arm-waving stage rather than aiming for the greater satisfaction that comes from deeper understanding.

Bravo, Steve et al. There are precious few stories like this.

The Rutherford School Physics Partnership has a PDF of more chain problems, if you want to roll your sleeves up and get stuck in.

Chain Reaction: Cambridge

I’m a bit of a fan of the Cambridge Science Centre, and of the people behind it. A year ago I trekked down from Newcastle to help them fix things up just before they opened. So by ‘fan’ I mean ‘groupie.’

Hence, my favourite parts of this film are Chris Lennard saying ‘Heath-Robinson‘ rather than ‘Rube Goldberg‘ (quite right too), and the brief glimpse at the end of the inimitable Dave Ansell leaning in to blow out a candle. Lovely people all.

My biggest problem with Heath Robinson machines is that they’re impossible to photograph unless they’re designed specifically for the camera. And the only people to have done that, really, are the folks behind the magnificent Japanese children’s series Pitagora Suichi, whose mechanisms are unbelievably smart:

(check this playlist for a bunch more from the same source.)

Self-siphoning beads

I really like this demo. It is simple and surprising, yet deceptively subtle and complex.

It also draws my attention to explanations. The first time I saw Steve present this he didn’t explain it, but I was transfixed. Effective demonstrations don’t always come with explanations. Sometimes less is more.

I’m no physicist, but I’m not fully satisfied by the explanation of what’s going on here. In that sense, despite the beautiful slo-mo, I preferred the first version I saw. I find this demo intensely pleasing despite it leaving me hanging.

Don’t get me wrong, I’m not advocating that we all go around deliberately producing unsatisfying explanations or consistently refusing to give any at all, but what works for me is that I’m left wanting to get my hands on a set of these to test it out, to explore and investigate the phenomenon to try to understand it better. Surely that’s one of the indicators of a great demo?

Pendulums [5] – Not Resonance

As Pendulum Week continues here you’ll have noticed a pattern building up: that pendulums crop up in all sorts of demonstrations, but it’s often rather tricky to pin down satisfying explanations for their behaviour. Pendulums appear simple and straightforward to grasp, which is usually a good sign for demonstration tools as we want audiences to engage with ideas or behaviour and not be distracted by unfamiliar apparatus. However, I wonder if it’s possible that pendulums are too simple, in that their apparent simplicity seems to lull us into forgetting their subtleties.

Heck, unless you’re in that sin θ ≈ θ small-amplitude space you haven’t even, technically, got simple harmonic motion. Most of the time, pendulums don’t even swing like, well, pendulums. Ouch.

It feels like it ought to be possible to link pendulum demonstrations together in a neat story. A mass on the end of a string is about as simple as physics apparatus gets, surely there’s a delightful sequence of demos which can build successively, one on the other, to arrive at something complex and surprising and revealing about the world? That’s got to be possible, right?

Perhaps it is, but the origin of this series of posts lay in my noticing that pendulum demos aren’t alike, and the distinctions seem to me to be of the subtle-and-confusing kind rather than the subtle-but-illuminating kind.

Probably the best attempt I’ve seen to navigate the resulting swamp was by my colleague Marty Jopson, who made this film for the first series of Science Shack (skip to 2:40 for the start of the show):

Marty and I were co-producers on the series, and if I remember correctly he won awards for this show. I wasn’t, I should say, much involved with this episode (harrumph), but it’s still worth a watch. It gets into some of the subtleties about resonance and synchronisation that we’ve seen in this series of posts.

Pendulums [2] – Phase

After the previous post I may have got a little carried away, and we’re declaring this Pendulum Week on ScienceDemo.org. Fresh pendulum action every morning.

This beautiful demo wasn’t something I’d seen before this film appeared, though the Harvard demos folks behind it trace its history to the University of Maryland in the early 90s, and from there back to Moscow State University previously. Everything old is new again.

Anyway, it’s a beautiful demonstration of pendulum periodicity and, through that, phase. Note that the previous pendulum demo was about the efficiency of energy conversion, and hence the only real link between these two demos is the pendulum itself. You may spot a theme developing here.